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Abstract Heterologous gene expression is one of the

main strategies used to access the full biosynthetic poten-

tial of actinomycetes, as well as to study the metabolic

pathways of natural product biosynthesis and to create

unnatural pathways. Streptomyces coelicolor A3(2) is the

most studied member of the actinomycetes, bacteria

renowned for their prolific capacity to synthesize a wide

range of biologically active specialized metabolites. We

review here the use of strains of this species for the het-

erologous production of structurally diverse actinomycete

natural products.
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Introduction

Natural products, also referred to as ‘‘secondary metabo-

lites’’ or ‘‘specialized metabolites’’, account for between

one and two-thirds of all therapeutic compounds (depending

on the data source) used either directly as isolated from

nature or as semi-synthetic derivatives; about 35 % of these

are of microbial origin. Strikingly, nearly 70 % of anti-

infectives used in medicine are natural products or their

derivatives [1, 2]. Although for the past couple of decades

the pharmaceutical industry has focused largely on syn-

thetic chemical libraries as a source of new drug leads, there

is now renewed interest in natural products [3–5]. This is

partly because sequencing of the genomes of producing

micro-organisms has revealed a much larger capacity for

the biosynthesis of specialized metabolites than previously

thought, raising the prospect of finding new structural

classes of natural products with useful biological activities.

The actinomycetes, high G?C Gram-positive bacteria

of terrestrial and marine origin, produce more than 40 % of

all known bioactive natural products of microbial origin

[1]. Moreover, 35 % of all marketed antibiotic formula-

tions contain an active ingredient derived from an actino-

mycete; since most antibiotics are semisynthetic

derivatives of a few natural products, actinomycetes pro-

duce an impressive 76 % of all original natural product

scaffolds used as anti-infective agents [6].

However, much of the biosynthetic potential of these

organisms is not observed under laboratory conditions.

Bioinformatic analysis of the genome sequence of the

model actinomycete Streptomyces coelicolor A3(2) first

revealed the presence of multiple cryptic gene clusters, i.e.,

clusters of genes without a known metabolic product [7, 8].

Such cryptic gene clusters may or may not be transcribed

under laboratory conditions. Since then, the affordability of

high-throughput DNA sequencing has facilitated the ana-

lysis of the genome sequences of an increasing number of

actinomycetes, revealing that cryptic gene clusters are a

general feature of these organisms. This has led to the

development of ‘‘genome mining’’ as a new strategy for

natural product discovery [9, 10] to which this issue of

JIMB is mostly devoted.

‘‘Genome mining’’ can be defined as the use of bioin-

formatics, molecular genetics, and natural product analyt-

ical chemistry to access the metabolic product of a gene

cluster found in the genome of an organism. There are two

main approaches to genome mining: (1) to activate the

expression of a transcriptionally silent cryptic gene cluster

by genetic manipulation of the producing organism, e.g.,
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by deleting or over-expressing putative negative or positive

transcriptional regulators, respectively [11, 12]; reviewed

in this issue: [13, 14]; (2) to clone a fragment of the gen-

ome of the producing organism containing the gene cluster

and express it in a suitable heterologous host.

Heterologous expression can be used for a number of

purposes. For example: to demonstrate that the complete

set of genes required for the biosynthesis of a particular

metabolite has been cloned; to obtain the metabolic product

of a cryptic gene cluster from an organism that is difficult

to culture or that is not genetically amenable; and to obtain

unnatural metabolites (by combining genes from different

biosynthetic pathways or by expressing mutated gene

clusters). General approaches and methods have been dis-

cussed elsewhere [15].

Streptomyces coelicolor as a heterologous host

The production of a typical natural product relies on

numerous cellular processes, all of which are highly

dependent on the genetics and biochemistry of the pro-

ducing organism. Thus, for effective heterologous expres-

sion, the use of a host species as closely related as possible

to the organism from which the genes to be expressed were

isolated will likely prove optimal. The use of Streptomyces

(order Actinomycetales/suborder Streptomycineae) and

Saccharopolyspora (order Actinomycetales/suborder

Pseudonocardineae) strains as heterologous hosts have

been reviewed recently [16].

S. coelicolor is genetically the most studied actinomycete

species. Its chromosome was fully sequenced and annotated

over a decade ago [7] and a large array of genetic tools are

available to manipulate the organism [17, 18]. These include

promoters for gene expression (e.g., the ermEp*, tipAp, and

tcp830p promoters for constitutive, inducible and de-

repressible gene transcription, respectively) and the ability to

manipulate and integrate large-insert genomic libraries into

the host’s chromosome (e.g., Ref. [19]; for an overview see

Ref. [15]). Furthermore, there is considerable understanding

of the regulatory mechanisms that control the processes of

both physiological and frequently linked morphological

differentiation in this species [20].

Like many if not most streptomycetes, S. coelicolor

produces both polyketides and non-ribosomal peptides, and

thus possesses the necessary primary metabolism to supply

the precursors for both of these important classes of com-

pounds. Most of the specialized metabolites produced by

this species have now been identified and structurally

characterized [21–35]. Moreover, methods for affordable

small-scale cultivation of S. coelicolor have been devel-

oped, allowing rapid screening at reasonable throughput for

laboratories without specialized facilities for high-

throughput screening [36, 37].

Unsurprisingly then, S. coelicolor has been used by

many research groups as a host for the heterologous

expression of biosynthetic gene clusters isolated from other

actinomycetes.

Strains of Streptomyces coelicolor used as heterologous

hosts

One of the desirable characteristics of a host strain is

limited production of its own specialized metabolites so

that metabolic precursors and energy can be directed into

the synthesis of the heterologous product. Another is the

lack of production of compounds with antibiotic activity

that could interfere with activity-based screens for the

products of cloned gene clusters. Five S. coelicolor strains

that largely fulfill these requirements, and that lack both of

the endogenous plasmids SCP1 and SCP2, have been used

as heterologous hosts:

S. coelicolor CH999 [38]: constructed with the main aim

of producing polyketides by deleting the actinorhodin

gene cluster and incorporating mutations in the gene

cluster for the prodiginines that abolish their production.

S. coelicolor M512 [39]: constructed to study the

regulation of actinorhodin and prodiginine production

by the pleiotropic regulatory protein AfsR. Production of

both antibiotics was abolished by marker-less deletion of

the pathway transcriptional activator genes actII-ORFIV

and redD, respectively. This strain has proved popular

because it does not carry any foreign DNA, including

antibiotic resistance genes.

S. coelicolor M1146 [40]: constructed by sequential

marker-less deletion of most of the gene clusters for the

production of actinorhodin (act), prodiginines (red), coeli-

mycin (cpk), and the calcium-dependent antibiotic (cda).

This strain was specifically designed for use as a heterol-

ogous expression host, and the deletion of the four gene

clusters markedly reduces the possibility of enzymatic

interference by host enzymes with an introduced biosyn-

thetic pathway. M1146 also possesses a much simplified

extracellular metabolic profile, markedly facilitating the

identification of heterologously produced metabolites [15].

S. coelicolor M1152 and M1154 [40]: obtained from

M1146 after the introduction of ‘‘Ochi-type’’ muta-

tions—either a single rpoB point mutation (M1152) or

double rpoB and rpsL point mutations (M1154)—

providing higher levels of production of specialized

metabolites due largely to increased levels of gene

transcription (reviewed by Ochi and Hosaka [41]). These

strains are being adopted widely by the research

community (see Table 1). Production of heterologous

metabolites is usually much higher than in M1146 [19,

40] or other streptomycete hosts [42].
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Classes of secondary metabolites successfully produced

S. coelicolor is proving to be a suitable heterologous host

for an increasing number of structural classes of secondary

metabolites. In addition to the well-known polyketides and

non-ribosomal peptides, metabolites derived from other

complex biosynthetic pathways have been produced by

heterologous expression of the corresponding gene cluster

in this species. Examples of gene clusters expressed in the

engineered S. coelicolor strains are summarized in Table 1.

These include gene clusters for lantibiotics (e.g., actagar-

dine and planosporicin) originating from actinomycetes

phylogenetically distant from Streptomyces.

Characterization of biosynthetic pathways

An important advantage of using such well characterized

strains as hosts is that their genetics and metabolism are

reasonably well understood, allowing the identification and

study of metabolic intermediates of the heterologous

pathway that are frequently produced and accumulated at

low levels. As an example, the biosynthesis of the nucle-

oside antibiotic tunicamycin had been proposed to occur

via an unusual 4-keto-5,6-ene-N-acetyl-sugar intermediate

[43]; in vitro studies with purified enzymes identified UDP-

6-deoxy-5,6-ene-N-acetyl-galactose as the most likely

candidate. To demonstrate the involvement of this sugar

in vivo, a copy of the tunicamycin gene cluster that had

been mutated in a gene required for its subsequent pro-

cessing was expressed in S. coelicolor M1152, leading to

the accumulation of the predicted intermediate and its

detection by LC–MS analysis [44].

Heterologous expression can also be very useful when

the production of a metabolite by the natural producer is

insufficient to allow investigation of the biosynthetic

pathway. For example, after attempts to improve eryth-

reapeptin production in the natural producer Saccharopo-

lyspora erythraea failed to yield sufficient material for

structural characterization, Süssmuth and coworkers [45]

achieved their goals by expressing the biosynthetic gene

Table 1 Gene clusters expressed in the optimized S. coelicolor hosts strains M1146, M1152, and M1154

Metabolite Metabolite class Natural producing micro-organism Aims Yield References

Cypemycin Linaridin (RiPP) Streptomyces sp. OH-4156 2, 3 Not reported [65]

Grisemycin Linaridin (RiPP) Streptomyces griseus IFO 13350 2, 4 Not reported [66]

Actagardine Lantibiotic (RiPP) Actinoplanes garbadinensis ATCC31049 2, 3 Not reported [56]

Planosporicin Lantibiotic (RiPP) Planomonospora alba 2 Not reported [62]

GE37468 Thiopeptide (RiPP) Streptomyces sp. ATCC 55365 6 Not reported [42]

Napsamycin Uridylpeptide Streptomyces sp. DSM5940 2 Not reported [67]

Clorobiocin Aminocoumarin Streptomyces roseochromogenes var. oscitans

DS 12.976

5 158 mg/l [36]

Coumermycin A1 Aminocoumarin Streptomyces rishiriensis DSM 40489 5 160 mg/l [36]

Caprazamycin Liponucleoside Streptomyces sp. MK730-62F2 5 152 mg/l [36]

FK506/FK520 (tacrolimus) Polyketide Streptomyces tsukubaensis NRRL 18488 2 2.81 mg/l [19]

Merochlorins Polyketide-terpenoid Streptomyces sp. CNH-189 2, 3 Not reported [47]

Gougerotin Peptidyl nucleoside Streptomyces graminearus CGMCC 4.506 2, 3 Not reported [68]

Endophenazine Phenazine Streptomyces anulatus 9663 2, 3 20 mg/l [52]

Roseoflavin Riboflavin (vitamin B2) Streptomyces davawensis JCM 4913 2 0.4 mg/l [69]

Staurosporine and

streptocarbazoles

Indolocarbazoles Streptomyces sanyensis FMA 2 Not reported [46]

Holomycin Thiopeptide (NRPS) Streptomyces clavuligerus ATCC27064 2, 3 Not reported [70]

Chloramphenicol Shikimic acid pathway Streptomyces venezuelae 1 40 mg/l [40]

Congocidine Pyrrole-amide

(oligopyrrole)

Streptomyces ambofaciens 1 Not reported [40]

Tunicamycin Fatty-acyl nucleoside Streptomyces chartreusis NRL3882 2, 3 Not reported [43, 44]

Unsuccessful product detection

Microbisporicin Lantibiotic Microbispora coralina 2 0 [60]

Platencin Platencin and

platensimycin

Streptomyces platensis MA7327 2, 3 0 [54]

1, validation of host strains; 2, cloning and characterization of biosynthetic gene cluster; 3, study of biosynthetic pathway; 4, characterization of

metabolite; 5, optimization of production; 6, generation of unnatural compounds; RiPP, ribosomally synthesized post-translationally modified

peptide
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cluster for the type-III lantibiotic in S. coelicolor M1146

and S. lividans TK24.

Actinobacteria isolated from marine environments are

becoming a promising new source of natural products, and

several examples of gene clusters isolated from marine

actinomycetes have been published recently (e.g., Ref.

[46]). A particularly interesting example of heterologous

expression of such a gene cluster in S. coelicolor is the

study of novel enzymatic reactions carried out by rare

haloperoxidases during the biosynthesis of merochlorins,

whose gene cluster was isolated from a marine Strepto-

myces species [47].

In another interesting example, Müller and coworkers

identified the gene cluster for bottromycin biosynthesis by

genome mining of Streptomyces sp. BC16019, but had to

rely on heterologous expression in S. coelicolor to study

the function of several of the biosynthetic genes. Deletion

of these genes in the natural producer could not be obtained

by standardly used double cross-over homologous recom-

bination [48].

Creation of unnatural pathways

The generation of novel chemical structures by combining

genes from different pathways or by abolishing the syn-

thesis of a precursor and feeding unnatural precursors

(mutasynthesis) are technologies known since the mid

1980s [49]. However, it is with the current availability and

affordability of gene synthesis that its full potential is

starting to be realized.

For example, Young and coworkers [42] generated new

variants of the ribosomally synthesized peptide antibiotic

GE37468. They expressed mutated precursor peptide

genes, in which up to seven codons had been randomized,

in S. coelicolor M1152 carrying the genes for GE37468

post-translational modification and secretion. They gener-

ated a library of 29 novel unnatural variants of the antibi-

otic that were subsequently assayed for bioactivity.

A targeted approach was chosen by Alt and coworkers

[50] to incorporate specific structural motifs into the am-

inocoumarin antibiotic clorobiocin. They aimed to replace

the 3-dimethylallyl-4-hydroxybenzoyl moiety of this

compound with catechol, thus mimicking a siderophore

that could be actively taken up by Gram-negative bacteria

(clorobiocin is active only against Gram-positive bacteria).

Having failed with mutasynthesis (annulling a key gene in

the biosynthesis of the hydroxybenzoyl ring and feeding

analogs to the resulting mutant), the authors designed an

unnatural biosynthetic pathway for 3,4-dihydroxy benzoic

acid (DHBA) by synthesizing genes with a codon usage

optimized for Streptomyces [51]. The pathway included

chorismate pyruvate lyase (UbiC) from Escherichia coli

and 4-hydroxy benzoate-3-hydroxylase (PobA) from

Corynebacterium cyclohexanicum; the genes were trans-

lationally coupled and placed under the control of the

strong constitutive promoter ermEp*. Expression of these

genes in S. coelicolor M512 led to the production of DHBA

and its subsequent incorporation into the unnatural and

heterologously produced aminocoumarin derivative con-

taining the catechol moiety.

Limitations and challenges

S. coelicolor M1152 and M1154 have proved useful for the

heterologous production of many different natural pro-

ducts, often proving superior to other Streptomyces strains

and species [42]. But there are also examples of failed

expression in S. coelicolor. This seems to be highly

dependent on the gene cluster, and it is not always readily

explained. An interesting example is the study of the en-

dophenazine gene cluster from Streptomyces anulatus [52];

S. coelicolor M512 produced much larger amounts of the

expected endophenazine A than M1146 or M1154,

although the authors found that these two strains accumu-

lated large amounts of a glutamine adduct that they called

endophenazine E, also detectable at much lower levels in

M512. In a subsequent paper with a similar gene cluster,

the same authors speculate that the glutamination could be

a defense mechanism of S. coelicolor, since the glutamine

adduct does not have antibiotic activity [53].

Another intriguing example is the heterologous expres-

sion of platencin biosynthetic gene cluster from Strepto-

myces platensis MA7327. Smanski and coworkers [54]

were able to detect production of platencin only in S. liv-

idans (strain K4-114), while three different S. coelicolor

strains (CH999, M1146 and M1154) and Streptomyces

albus J1074 failed to produce any detectable compound.

Production in S. lividans was detected only after deletion of

the pathway specific regulator ptnR1, i.e., it was necessary

to remove the negative transcriptional regulation to achieve

the heterologous expression. Why this did not work in the

other Streptomyces strains is not clear.

In other cases, levels of production were markedly

increased after exchanging the native transcriptional pro-

moters of the gene cluster of interest by presumably

stronger constitutive promoters. Du and coworkers [55]

obtained a tenfold increase in gougerotin production after

replacing the native promoters with that of hrdB (which

encodes the major sigma factor of S. coelicolor), reaching

0.5 mg/l of production in S. coelicolor M1146.

Another limitation may be the sensitivity of the host

strain to the metabolite being produced. In the aforemen-

tioned case of bottromycin biosynthesis in S. coelicolor,

heterologous production of the antibiotic was very low

until the authors used the strong constitutive promoter
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ermEp* to drive transcription of the gene encoding the

putative bottromycin transporter, leading to a 20-fold

increase in production. This might reflect sensitivity of the

host strain to the antibiotic; over-expression of the immu-

nity mechanism (in this case, the export machinery)

apparently allowed for higher tolerance and therefore

production of the antibiotic [48].

However the limitations of a Streptomyces host are more

evident when attempting to express gene clusters isolated

from phylogenetically more distant actinomycetes. Despite

the success with the gene cluster for actagardine biosyn-

thesis [56, 57] isolated from Actinoplanes liguriae (sub-

order Micromonosporineae), attempts to express the gene

cluster for microbisporicin, isolated from Microbispora

corallina (suborder Streptosporangineae) failed [58],

although transcription of the biosynthetic genes was

detected in S. lividans [59]. This might reflect the failure of

the immunity mechanism to function effectively in the

heterologous host and the existence of fail-safe systems

that ensure production only occurs once immunity is in

place [60]. A similar limitation was found initially when

trying to express the gene cluster for planosporicin, isolated

from Planomonospora alba (suborder Streptosporangi-

neae). In this case, production of the antibiotic was

achieved in S. coelicolor M1152 after removing the neg-

ative transcriptional regulation mediated by the gene

encoding an anti-sigma factor present in the gene cluster;

production was lower than in the natural producer, and was

only observed on agar medium [61]. Heterologous pro-

duction of both microbisporicin and planosporicin was

readily obtained however when expressing the respective

gene clusters in Nonomuraea sp. ATCC 39727, a closer

relative of Microbispora and Planomonospora than

Streptomyces species and from the same Streptosporangi-

aceae family [58, 62].

Perspectives

Here we have discussed the recent successes as well as

failures of S. coelicolor as a heterologous host for the

production of specialized metabolites derived from other

actinomycetes. Overall, and without detracting from the

use of other Streptomyces species (e.g., S. avermitilis [63])

and other actinomycetes (e.g., Nonomuraea [64]) as

expression hosts, we believe that S. coelicolor, with its ease

of culturing and genetic manipulation, has proven to be an

extremely useful host for the heterologous production of

actinomycete natural products. Whether the S. coelicolor

strains described here can play a role in high volume

commercial production remains to be seen (such applica-

tions might well require their further customized modifi-

cation to achieve, for example, higher levels of precursor

supply for different classes of compounds). Nevertheless,

their value as discovery and analytical tools appears to be

clear.
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